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This chapter discusses how to calculate the interference of wavefronts for telescopes and

interferometers, how to separate astrophysical effects from instrumental effects, and how to

optimize visibility measurements.

We focus on homodyne detection, a technique in which stellar wavefront segments are

combined with each other in real time to make an image or a fringe pattern, whose intensity

is then detected.

The alternative is heterodyne detection, a technique in which each stellar wavefront segment

is combined with a local oscillator signal to make a beat frequency which is recorded, and

at a later time a collection of simultaneously recorded beat signals is combined to form an

image or a fringe pattern. The heterodyne technique and its applicability to wavelengths

of about 10 µm and longer is discussed by Townes in Chapter 4.

However, despite their different detection techniques, homodyne and heterodyne interfer-

ometry still share identical basic principles, and much of the material in this chapter applies

equally to both.
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3.1 Elements of Beam Combination

In this section we present simple examples of beam combination, for one- and two-aperture

configurations and for three basic types of sources. We distinguish multiple apertures (this

section) from multiple telescopes (the following section). From the discussion it should be

clear how to generalize each result to more realistic or complex situations. In simple cases

it is relatively straightforward to see how to invert observed data to infer source properties,

but in general the van Cittert–Zernike theorem is needed, as discussed at the end of this

section.

3.1.1 Single Aperture and Point Source

It is instructive to start thinking about interferometers by first considering the case of a

single telescope. In fact, an ideal single telescope is also an ideal interferometer. If it were

possible to build a single telescope with a diameter as large as the baseline of an interfer-

ometer, we would never even consider building an interferometer, since interferometers are

intrinsically more complex than telescopes. Also, many of the technical aspects of interfer-

ometers derive directly from the need to duplicate the action of a single large mirror, so it

is useful to understand how a single collecting element works.

The simplest possible case is that of a plane wave incident on a single aperture, as shown in

Figure 3.1. The collimating element is drawn as a lens, but any equivalent optical system,

such as a Cassegrain telescope, will do. The aperture is stopped to a diameter D by a baffle

in the (x, y) plane. The symmetry axis (z) in Figure 3.1 is a line from the center of the star

through the optical center of the telescope lens.

Throughout this chapter we will assume that the optical systems are completely free of

geometrical optical aberrations. For a useful book on telescope optics see Schroeder (2000).

The incident light from a real star is a stream of photons arriving at random times from a

range of random angles within the angular diameter of the star. A single photon from this

stream effectively exists over an arbitrarily large area on the surface of a sphere centered

on its emitting atom, prior to detection. The photon simultaneously senses the presence of

all the details of the collecting aperture, which can be of arbitrary shape, size, and degree

of topological connectedness.

It helps at this point to forget about photons and think instead about waves. It also helps to

think about a wave as a series of little spherical waves which repeatedly generate themselves

at all points across the wavefront, and propagate outwards, but which in free space only

end up propagating in the forward direction because this is the only direction in which the

little waves constructively interfere. These are called Huygens’ wavelets in optics texts,

where the term “wavelet” means little wave. It does not mean a wave packet in the modern

mathematical sense of the word “wavelet”!
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Figure 3.1: Delta-function star and single telescope. Input wavefronts arrive at the
aperture from angle θ = 0 only, but output wavefronts exist at all angles, albeit con-
centrated near the input angle. The intensity pattern plotted here is the circular
aperture diffraction pattern Itel(θ) = [2J1(πθD/λ)/(πθD/λ)]2.

The incident idealized photon is also monochromatic, and therefore has essentially infinite

extent in the direction of propagation. The corresponding classical wave has the same

extent. If we think of an emitting atom at the surface of the star where the photon

originated as a classical oscillator, then we may define a wavefront from this oscillator

as the collection of all points on the outwardly propagating wave which were generated at

the same time. There are therefore an infinite series of concentric wavefronts being emitted

over time, and we may choose any one of them to consider as the wave moves through

our optical system. I find it useful to think of the wavefront as the surface on which the

wave has its maximum positive electric field strength. Since the wave is periodic, successive

wavefronts are separated by one wavelength.

As the wavefront crosses the plane of the entrance pupil, the wavelets in the center of the

pupil continue as before, propagating a plane wavefront. However at the edge of the pupil

there is no longer a reinforcement of wavelets from the part of the incident wavefront that

is now blocked, and the wavelets inside the pupil will start to spread transversely into the

geometric optics shadow region.

For an alternative mental model of wavefront propagation, one could also think of row

after row of people marching shoulder to shoulder in a huge parade, with the people in
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the middle being kept to the forward direction by their neighbor’s shoulders. When the

marching rows encounter a wide gate open in a long wall, the people in the center are still

constrained to march forward by their neighbors, but the few folks nearest the gate edges

will feel unconstrained on one side, and without guidance their paths will begin to divert

from that of the main group.

Actually the row-of-people analogy is not quite as far fetched as it sounds, because in

principle each of the marching people has a de Broglie wavelength given by λ = h/mc, so

to the extent that these people are mindless particles with no other influences on them,

they will behave like diffracting particles. More practically, a beam of electrons, neutrons,

protons, atoms, or molecules will follow the same rules, as has been demonstrated many

times.

In astronomical telescopes we are only interested in what happens to the wavelets at large

distances (compared to a wavelength) from the diffracting edges, i.e., in the far-field diffrac-

tion pattern. Fortunately for us, this is relatively simple to calculate, given that each wavelet

has a known amplitude and phase, and given that we have a rule for combining electric

field amplitudes and another rule for converting the total amplitude to an intensity, which

is the measurable quantity of interest.

Another measurable quantity is the state of polarization of the electric field of the detected

photon. In general we will ignore polarization because the net effect of polarization on

diffraction is most often a second-order effect. There is one important exception, however,

in the case of reflection from mirrors, which we will discuss later in this chapter.

In Figure 3.1, we show an aperture followed by a lens and a focal plane. According to

geometric optics, the star will be focussed in the focal plane, and the image will be a

perfect replica of the star, here a delta-function. However according to physical optics we

must find the image by adding up the amplitudes of the wavelets which make it through

the aperture and propagate in the direction of any point in the focal plane.

Recall that an ideal lens merely acts to convert an input direction of propagation into an

output location in the focal plane. A pinhole does the same thing, but a lens is better in

the sense that it converts an incident ray anywhere on its surface into a ray heading for a

single position in the focal plane. It is also helpful to recall that the ray through the center

of the lens is not deviated, so input direction equals output direction. Thus in Figure 3.1

we show intensity in the focal plane in terms of an output angle θ. This is equivalent to

position in the focal plane, divided by the focal length of the imaging optics.

At a given point θ in the focal plane, the total amplitude is the sum of all the wavelet

amplitudes at the aperture heading in the direction θ, allowing for their relative phases.

From Maxwell’s equations we know that the electric field amplitude is sinusoidal in space

and time, so that in one dimension and for one polarization, the electric field amplitude E

can be written conveniently as the real part of the complex amplitude A(z, t) = ei(ωt−kz+φ).

We use conventional notation where z is linear distance in the direction of propagation, t



3.1. ELEMENTS OF BEAM COMBINATION 35

is time, k = 2π/λ = nk0 = 2πn/λ0 is the magnitude of the wave vector (or propagation

vector), n is the index of refraction, nz is the “optical path,” λ = λ0/n = c/nν is the

wavelength in the medium, ν is the temporal frequency of oscillation, ω = 2πν is the

angular frequency, and φ is the phase of the wave (Born and Wolf, 1999).

Let us define the position of measurement of the amplitude to be z = 0, the time of

measurement to be t = 0, and the medium of propagation to be vacuum, so n = 1. This

reduces the complex amplitude to eiφ.

At first sight it may appear that we have defined away all the interesting physics, but the

seemingly ridiculous simplicity of eiφ is in reality the heart of the problem of calculating

interference effects. We have merely stripped away the non-essential parts.

From a quantum-mechanical point of view, the eiφ term is a propagator of a probability

amplitude from one place and time to another, where φ represents the change in phase

(modulo 2π) of the probability amplitude along the minimum path.

The phase is calculated across a tilted surface in the pupil, oriented at an angle θ with

respect to the incoming wavefront. There are an infinite number of such tilted surfaces.

The relative strength of an outgoing wavefront parallel to one of these surfaces is determined

by adding up all the wavelets on that surface. The phase at each point is 2π times the

distance between the input and output wavefronts, in units of wavelength. Let us focus on

the aperture’s x-dimension for the moment. The phase of a wavelet is

φ(z) = 2πx sin(θ)/λ (3.1)

' 2πxθ/λ (3.2)

where x sin(θ)is the distance between the incoming wavefront from direction θ = 0 and the

outgoing wavefront at angle θ, and we assume θ � 1.

The net output amplitude from the telescope in the direction θ is Atel(θ), which we calculate

as the algebraic sum of all wavelets across the pupil.

Atel(θ) =
∑

(wavelets) (3.3)

=

∫

pupil
eiφ(x)dx (3.4)

=

∫ +D/2

−D/2
ei(2πxθ/λ)dx (3.5)

=
λ

2πiθ

[

e+iπθD/λ − e−iπθD/λ
]

(3.6)

=
sin(πθD/λ)

πθD/λ
D (3.7)

The measured intensity I is the squared magnitude of the amplitude.

Itel(θ) = |Atel|
2 (3.8)
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Itel(θ) =

[

sin(πθD/λ)

πθD/λ

]2

D2 (3.9)

The intensity pattern is thus a sinc(X) ≡ sin(X)/X function, with a strong central peak and

small secondary peaks, as shown in Figure 3.1. The first zero is the solution of Itel(θtel) = 0

and is given by

θtel = λ/D. (3.10)

The corresponding result for a two-dimensional circular aperture is found by replacing
∫

D

by
∫

circle with the result

Itel(θ) =

[

2J1(πθD/λ)

πθD/λ

]2

D2 (3.11)

where J1(X) is the Bessel function of first order, roughly similar to a damped sine function.

Numerically J1(X) for any real X can be calculated using the BESSJ1 routine in Numerical

Recipes (Press et al., 1992). The first zero-intensity angle is the solution of Itel(θtel) = 0

and is given by X = 1.22π or

θtel = 1.22λ/D (3.12)

which is the famous relation for an unobstructed circular aperture. The full-width at half-

maximum (FWHM) of the intensity pattern is roughly approximated by the value of θtel,

so this value is often loosely referred to as the diameter of the diffraction-limited image.

Here are several useful variations on the same theme.

Constant Phase

Suppose we add a constant phase φ0 across the aperture. Then we get

Atel(θ) =

∫ +D/2

−D/2
ei(2πxθ/λ+φ0)dx (3.13)

=
sin(πθD/λ)

πθD/λ
eiφ0D (3.14)

and Itel is unchanged.

Star Off-Axis

Suppose that the star moves off the telescope axis, or equivalently that the telescope is

pointed away from the star by an angle θ0. The input wavefronts are then tilted by θ0, and

the summing of phases, determined by the distance from the input and output wavefronts,

yields

Atel(θ) =

∫ +D/2

−D/2
ei(2πx(θ−θ0)/λdx (3.15)

=
sin(π(θ − θ0)D/λ)

π(θ − θ0)D/λ
D (3.16)
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and we see that the intensity pattern will be shifted to a new center at position θ0 in the

focal plane, just as one would expect from geometric optics.

Phase Step: Speckle

Suppose we add a phase step of π across half of the aperture. This simulates the action of

the turbulent atmosphere in a very simple case. The net amplitude with this phase step is

Atel(θ) =

∫ +D/2

0
ei(2πxθ/λ+π/2)dx +

∫ 0

−D/2
ei(2πxθ/λ−π/2)dx (3.17)

= −
sin2(πθD/2λ)

πθD/2λ
D (3.18)

and the intensity is

Itel(θ) =

[

sin2(πθD/2λ)

πθD/2λ

]2

D2. (3.19)

This pattern has two main peaks offset from the axis by about ±λ/D, and with widths

about λ/D, plus small secondary peaks. The effect of the phase step is to split the un-

perturbed image into two pieces, each of which looks rather similar to the original image.

The perturbed images are called speckles. If more phase steps are added, more speckles will

appear, but each will still be a more or less faithful copy of the diffraction-limited unper-

turbed case. This is the basis for speckle interferometry. One of the simplest techniques to

recover the original image from a speckle pattern is called “shift and add,” which seeks to

superpose the speckles on a common axis, post detection. From the example here, one can

see why this technique enjoys some success.

Central Obscuration

Suppose that the telescope aperture has an outer width D and a central obscuration of

inner width d. In the one-dimensional case, the electric field amplitude in the focal plane

is then

Atel(θ) =

∫

−d/2

−D/2
ei(2πxθ/λ)dx +

∫ +D/2

+d/2
ei(2πxθ/λ)dx (3.20)

=
sin(πθD/λ)

πθD/λ
D −

sin(πθd/λ)

πθd/λ
d (3.21)

and the light intensity is given by

Itel(θ) =

[

sin(πθD/λ)

πθD/λ
D −

sin(πθd/λ)

πθd/λ
d

]2

. (3.22)

By analogy, the corresponding expression for the intensity from a two-dimensional circular

aperture of diameter D, with central obscuration (e.g., a secondary mirror) of diameter d

is given by
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Itel(θ) =

[

2J1(πθD/λ)

πθD/λ
D −

2J1(πθd/λ)

πθd/λ
d

]2

. (3.23)

Comparing this with the non-obscured case, we see that for a telescope primary mirror

of a given diameter D and a finite secondary diameter d, the intensity distribution has a

slightly narrower central core (i.e., slightly better angular resolution) but at the expense

of significantly stronger diffraction rings around the central core. The reason that the

core is narrower is that the inner portion of the aperture, i.e., the low angular resolution

part, has been removed, leaving the outer portions which are responsible for the high

angular resolution performance. The sidelobes increase for the reason that, at angles outside

the central core, the missing central portion means that there are fewer central wavelets

available to provide phase cancellation with the edge wavelets. Thus more of the edge

wavelet power appears in an aliased form outside the central core.

Some additional interesting possibilities that could be calculated include tapering the trans-

mission factor of the pupil near the edges so as to apodise (“remove the feet”), or reduce,

the secondary diffraction rings, or adding a phase screen across the aperture in order to

delay the phase near the outer edges and thereby alter the phase of the diffraction rings.

With these examples worked out, we can now graduate quickly to several other key cases

of interest to interferometry.

3.1.2 Two Apertures and Point Source

The two-aperture calculation proceeds as with the one-aperture case, but with the single

opening replaced by two openings of equal diameter D, separated by a baseline B, as

shown in Figure 3.2. The configuration is that of a pointed interferometer, and can be

achieved by masking the primary mirror of a large telescope as indicated in the Figure;

this is nominally what Michelson did at the 100-inch telescope, and it also describes the

original MMT mirrors, and the current LBT. In a very large interferometer, which is too

large to mount on a single pointed platform, one can literally join the focal planes of two

or more separate telescopes, in which case additional issues of path length, magnification,

field rotation, and polarization must be considered.

For two apertures the amplitude Aint of the electric field in the focal plane of a two-element

interferometer is given by

Aint(θ) =
∑

(wavelets) (3.24)

=

∫

pupil
eiφ(x)dx (3.25)

=

∫ +B/2+D/2

+B/2−D/2
ei(2πxθ/λ)dx +

∫

−B/2+D/2

−B/2−D/2
ei(2πxθ/λ)dx (3.26)

=
sin(πθD/λ)

πθD/λ
cos(πθB/λ)2D (3.27)
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Figure 3.2: Two apertures and a single delta-function source. The two apertures
form a pair of superposed diffraction-limited images, crossed by interference fringes.
The figure is drawn for the case B/D = 3, so the expected number of fringes in the
packet is Npacket = 7.3, which is about what is seen here.

and the intensity is given by

Iint(θ) = 2Itel(θ) [1 + cos(2πθB/λ)] (3.28)

which is the product of two terms, the broad envelope of a single-telescope diffraction

pattern, and the rapidly varying interference term which depends only on the distance

between the telescopes, as shown in Figure 3.2. Clearly the Itel term can be either the

one-dimensional one shown here, or a two-dimensional J1 function derived above.

The first zero of the intensity pattern is the solution of Iint(θint) = 0 and is given by

θint = λ/2B (3.29)

which is also the width (FWHM) of one of the narrow fringes, and therefore the angular

resolution limit of the interferometer.

Let us define a fringe packet as the central lobe of the telescope diffraction pattern. The

envelope of the fringe packet has an angular width of 2θtel between first zeros. The number

of fringes Npacket in a fringe packet is given by

Npacket = 2.44B/D. (3.30)



40 CHAPTER 3. BEAM COMBINATION AND FRINGE MEASUREMENT

3.1.3 Two Apertures and Binary Star

Suppose we have a binary system comprising two equal-magnitude stars separated by θbin,

centered on the axis of a two-aperture interferometer. The amplitudes and intensities from

each star must be treated independently, because the sources are not coherent (photons

from one star have no knowledge of photons from the other star). In the focal plane we

then have two independent interferometer intensity patterns which add to give a binary-star

intensity

Ibin = Iint(θ − θbin/2) + Iint(θ + θbin/2) (3.31)

If the separation is small compared to the width of the fringe packet, i.e., θbin � 2θtel, then

we can factor out the envelope shape and find

Ibin ' 2Itel(θ) [1 + cos(2π(θ + θbin/2)B/λ) + 1 + cos(2π(θ − θbin/2)B/λ)] (3.32)

= 4Itel(θ) [1 + Vbin cos(2πθB/λ)] . (3.33)

The coefficient of the interference modulation term is known as the fringe visibility, or

simply the visibility, and is given in this case by

Vbin = cos(πθbinB/λ). (3.34)

The visibility has its first zero Vbin = 0 when the binary separation is

θbin = λ/2B. (3.35)

The generalization of these results to unequal magnitudes and a two-dimensional configu-

ration is straightforward but messy.

3.1.4 Two Apertures and Uniform Disk

A real star has a finite diameter, and each of the photons emitted from its surface is

independent of all other photons (unless there is maser activity taking place, as does happen

in the atmospheres of some stars, under appropriate conditions). As with the binary star

case, the intensity in the focal plane of a telescope or interferometer is then given by the

superposition of appropriately shifted and scaled intensity patterns. For a uniformly bright

disk in one-dimension (UD1) whose width is θUD1, and where we assume that the disk is

small compared to the fringe packet width (θUD1 � 2θtel), we add up the incoherent fringe

patterns as follows.

IUD1(θ) =
∑

disk

(intensities) (3.36)

=

∫

disk
Iint(θ − θx)dθx (3.37)

=

∫ +θUD1/2

−θUD1/2
2Itel(θ − θx) [1 + cos(2π(θ − θx)B/λ)] dθx (3.38)

' 2Itel(θ) [1 + VUD1 cos(2πθB/λ)] (3.39)
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Figure 3.3: The Space Interferometry Mission (SIM) pocket interferometer card. The
apertures on the actual card are a single circular hole (.) in a piece of black film on
the “one aperture” side, and two holes (..) on the “two apertures” side. With one
aperture, a point source will appear as concentric rings, as shown, but with the outer
rings progressively fainter than the center one. With two apertures, the central bright
peak is crossed by strong vertical modulation bands, as is the secondary ring, and
(faintly) the third ring.

Here the fringe visibility of a uniform disk in one-dimension is given by

VUD1 =
sin(πBθUD1/λ)

πBθUD1/λ
. (3.40)

By analogy we immediately see that the intensity pattern for a two-dimensional round

uniform disk (UD) is given by a similar equation where the visibility is

VUD =
2J1(πBθUD/λ)

πBθUD/λ
. (3.41)

The visibility has its first zero VUD = 0 when the star diameter is

θUD = 1.22λ/2B. (3.42)

Note that 2J1(X) is similar to sin(X) in that the central lobe is positive, the first secondary

lobe is negative, the second secondary lobe is positive, and so on. In the fringe pattern,

this means that the fringes in the alternate lobes have their signs inverted with respect to

the extrapolated fringes from neighboring lobes. In other words, counting the central lobe

as number 0, the even lobes have phase = 0, and the odd lobes have phase = π.

3.1.5 The Pocket Interferometer

The SIM pocket demonstration card shown in Figure 3.3 is an excellent one-dimensional,

two-aperture, mask, which when held close to your eye provides a complete interferometer.

Here the telescope is your eye lens, and the focal plane is your retina. The diameter of each

aperture is D ' 0.07 mm, so the telescope diffraction pattern has a width θtel = 1.22λ/D '
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2000 arcsec, which is about the angular diameter of the sun or moon. The separation of

the apertures is B ' 0.25 mm, so the angular width of a fringe with this interferometer is

θint = λ/2B ' 200 arcsec, which is about the width of a Mag-LiteTM filament at a distance

of roughly a foot (note however that the filament is much longer than it is wide). The

number of fringes in a fringe packet (the angular width of the single-telescope diffraction

pattern) is Npacket = 2.44B/D ' 8 in this case, independent of the light source, of course.

The Mag-Lite should be used with the normally-present flashlight reflector removed, so that

you see just the filament itself. The Mag-Lite will appear to be a small, unresolved star if

it is viewed at arm’s length or farther, with the filament rotated (i.e., the flashlight rolled

around your line of sight) so that its narrow dimension is parallel to the baseline ~B of the

pocket interferometer, thus making a one-dimensional system. In this case you will see a

central bright lobe crossed by about eight fringes, oriented perpendicular to the baseline.

You will also see the same straight fringes crossing the first and second side lobes of the

single-telescope diffraction pattern.

The Mag-Lite can be made into a large-diameter star by rolling it 90o about the line of

sight, so that the long axis of the filament is now parallel to ~B. In this case you will see a

central lobe which is smooth, with no fringes. What has happened is that multiple fringe

patterns are now superposed with a range of shifts, and the fringe pattern is washed out,

as predicted by the equations above.

3.1.6 Two-Aperture Beam Pattern on Sky

If you were to think like a radio astronomer, you would imagine the antenna pattern to be

projected out from the receiver horn of each antenna and thence from the array as a whole

and onto the sky. As you move the antenna, or change the phase at an array element, the

pattern sweeps across the sky. The received signal is the convolution of the moving pattern

and the sources in the sky. A sinusoidal pattern projects out the Fourier component of

that spacing of fringes on the object, and therefore the Fourier component of the intensity

distribution across the sky.

You can see from this view that if all possible fringe spacings and orientations could be

swept across the object, and if their phases (i.e., the relative locations of the central fringe

peaks) could be recorded, then these measured quantities would essentially fill the two-

dimensional Fourier plane with complex values (an amplitude and phase pair). A Fourier

transformation of these values would then yield a perfect image of the source. This is not

only a good mental picture, but it is also the basis of the van Cittert–Zernike theorem in

the following section.
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3.1.7 van Cittert–Zernike Theorem

The famous van Cittert–Zernike theorem was developed from the work of van Cittert in

1934 and Zernike in 1938. This theorem (Born and Wolf, 1999) formalizes the heuristic

discussion in the preceding section, and it is the basis of any attempt to reconstruct an

object from interferometer measurements.

Suppose that two apertures are separated by baseline vector ~B. Suppose that the source

has an intensity distribution on the sky given by I(~α), where ~α is a two-dimensional sky

coordinate. Then the complex degree of coherence µ is given by

µ( ~B) =

∫

I(~α)e−ik ~B·~αd~α/

∫

I(~α)d~α (3.43)

where k = 2π/λ, and the integrals are over the field of view of the diffraction-limited

single-aperture beam, a cone of half-angle θtel. The degree of coherence is the modulus

visibility = |µ| (3.44)

and the phase is the argument

phase = arg(µ). (3.45)

The inverse relation

I(~α)/

∫

I(~α)d~α =

∫

µ( ~B)e+ik ~B·~αd ~B (3.46)

recovers the image from the suite of visibility measurements. In this equation, the integral

on the right is over all possible baseline positions.

3.2 Beam Combination in Practice

This section addresses some practical aspects of beam combination, including Michelson’s

pioneering stellar interferometer, optical configurations for large ground-based interferom-

eters, and multiplexing methods.

3.2.1 Michelson’s Stellar Interferometer

An interesting aspect of Michelson’s original stellar interferometer is that although it was

mounted on a conventional telescope structure, the actual wavefront collecting mirrors were

not part of the telescope optics, but rather were a pair of 45o flats riding on an external

rail so that the baseline length B could be adjusted to be up to several times larger than

the telescope primary itself. The beam combination itself used a smaller baseline B0 which

had used the telescope primary to bring together the separate beams and form superposed

images of the star in the focal plane, as shown in Figure 3.4.
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Figure 3.4: (a) Michelson interferometer schematic, showing the external collection
baseline B, and the internal combination baseline B0. The fringe spacing is deter-
mined by B0. (b) Detail schematic of variable-thickness wedge (left) and tilt plate
(right) used by Michelson to equalize the optical paths at all wavelengths and to
precisely superpose two images of the target star, respectively.

Thus the coherence of the star is measured by the collecting baseline B, so this value

governs the visibility of the source. The modulation pattern in the focal plane is set by the

combining baseline B0. This is a sufficiently important distinction that we write it out:

B = collection baseline (3.47)

B0 = combination baseline (3.48)

So, with this distinction in mind, and without further derivation, we write the intensity in

the focal plane of the interferometer as

Iint(θ) = 2Itel(θ) [1 + VUD cos(2πθB0/λ)] (3.49)

where the B0–dependent cosine term expresses the modulation of the envelope Itel, and

where the B–dependent VUD term expresses the degree of modulation

VUD =
2J1(πBθUD/λ)

πBθUD/λ
. (3.50)

So B0 can be made to be any convenient value. Michelson used B0 = 1.14 m, so the fringe

width is θint = λ/2B0 = 0.045 arcsec. Let us assume that Michelson’s viewing eye had an

angular resolution θeye = 1.22λ/(5 mm) ' 25 arcsec. To resolve the fringes with his eye

he would therefore need additional angular magnification M from the telescope eyepiece,

where nominally M = θeye/θint ' 25/0.045 ' 600 times, and, in fact, that is what he

reported.

Two further details are worth noting. First, Michelson inserted a plane-parallel plate of

glass in one of the beams, within arm’s reach, and tilted it in order to precisely superpose
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the two star images, thereby effectively making the wavefronts parallel at the entrance

pupil, and compensating for small alignment errors in the relay flats and bending of the

structure. (Remember, position in the focal plane corresponds to angle at the incoming

wavefront.)

Second, Michelson inserted two opposing glass wedges into the other beam, and slid these

past each other so as to give a variable thickness of glass, and thereby compensate for the

variable effective thickness of the tilt plate. This compensation ensures that wavefronts

from different wavelengths arrive at the same time from both beams, and ensures that the

broad band of wavelengths produces sharp fringes across the intensity envelope.

3.2.2 Image-Plane and Pupil-Plane Combination

There are two fundamentally different types of beam combination at the back end of an

interferometer, and all ground- and space-based interferometers use one or the other of

these methods. Deciding which one to use depends to some extent on the personal style of

the designer. In principle, with an ideal instrument (noiseless detector, etc.), the ultimate

signal-to-noise ratios from both methods should be identical.

Image-Plane Interferometry

Image-plane interferometry is the method of combining two beams in which each beam is

focussed to make an image of the sky, and the images are superposed, so that interference

fringes will form across the combined image. This is also called Fizeau interferometry, after

Fizeau who originally suggested using a two-slit mask across the aperture of a conventional

telescope to resolve stellar diameters. It is also the method used by Michelson in his stellar

interferometer, as described above.

A generalized image-plane interferometer, for ground-based observations with long base-

lines, is sketched in Figure 3.5(a). Let ζ be the angle between the baseline vector ~B and the

stellar wavefront above the atmosphere. Then a stellar wavefront arrives at one telescope

with an external vacuum path difference zext. = B sin(ζ) compared to its arrival at the other

telescope. To compensate, a delay line is introduced into one arm of the interferometer,

giving an internal vacuum delay zint.. The phase difference between the two beams is then

φ = 2π∆z/λ, where ∆z = (zext. − zint.) is the optical path difference (OPD) between the

wavefronts, and the delay line is continuously adjusted to keep this quantity close to zero,

as the Earth rotates.

The fringe intensity is displayed as a function of angular position θ in the focal plane, and

is given by

Iint(θ) = 2Itel(θ) [1 + V cos(2π(θB0 + ∆z)/λ)] (3.51)

where Itel is the envelope shape, V is the visibility of the star, θB0 is the fringe modulation
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Figure 3.5: (a) Image-plane interferometer schematic,showing the external path dif-
ference zext., internal path difference zint., and the non-zero beam-combination base-
line B0. (b) Pupil-plane interferometer schematic, showing a half-silvered beam-
combiner plate and zero distance beween combining beams.

term and ∆z is the fringe position term. Appropriate magnification and a multi-element

detector are used to detect the fringes.

When the delay line is adjusted to give an OPD of ∆z = 0, then the peak intensity of the

fringe pattern is centered in the envelope. If the delay line is moved off of the zero OPD

position, the envelope will stay fixed but the fringes will move across the envelope. If a finite

bandwidth or multiple narrow wavelength bands are present, then at non-zero OPD values

the fringe peaks from different wavelengths will be non-coincident, and for large values of

OPD the fringes will blur out completely, as described in the section below, under “spectral

bandpass.”

Spectral dispersion can be used with image-plane interferometry by introducing a prism or

grating to disperse the light along the direction of the fringes. Since the fringe spacing is

proportional to λ, the dispersed fringes will have a fan-like appearance with the red fringes

at the wide end of the fan, and blue at the narrow end.

Pupil-Plane Interferometry

Pupil-plane interferometry is the method of combining two beams in which parallel beams

are superposed, using a half-silvered mirror or equivalent, and the two resulting output

beams are each focussed on single detector pixels. This is called Michelson interferometry,

after the eponym’s original 1893 interferometer, which showed that the speed of light is

independent of the observer’s velocity.
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A ground-based pupil-plane interferometer is sketched in Figure 3.5(b). In pupil-plane

interferometry the combining beams are completely overlapped, so the combining baseline

is zero, B0 = 0. The delay-line compensation is identical to that in the preceding case.

If the OPD in Figure 3.5(b) is adjusted to be zero, then by symmetry the overlapped beams

emerging from either side of the beam splitter should have equal intensities, since each is

the sum of one reflected and one transmitted beam. Another way to express this is to say

that the beam splitter has the property that the phase difference between transmitted and

reflected beams is exactly π/2, which we shall prove in the following section entitled “beam

splitter phase shift,” but which we will simply accept for the moment.

The phase difference between the combined beams is then φ = 2π∆z/λ ± π/2, where

∆z ≡ zext.− zint. is the OPD as before, and where the additional ±π/2 is the beam splitter

phase shift.

The fringe intensity follows a similar expression as above, but the π/2 term changes the

+ cos term to ± sin. Thus as the OPD is varied, the combined beam intensities will vary

with opposite signs, giving

Iint(t) = 2Itel [1± V sin(2π∆z(t)/λ)] . (3.52)

Here we have integrated over angle in the focal plane so that Itel =
∫

Itel(θ)dθ. We have

explicitly assumed that the phase difference is time-modulated, rather than being spatially

modulated as in the image-plane case. If the time modulation is a triangle or ramp function,

then ∆z(t) = vt over part of the modulation cycle. The measured amplitude of the time-

modulated signal gives the visibility V directly.

Note that the π/2 term, or equivalently the sine dependence, is very frequently ignored

by practitioners and textbooks alike, but it is nevertheless a salient feature of pupil-plane

interferometry.

If a finite spectral bandwidth is present, then, just as in the image-plane case, if the OPD

is adjusted to be non-zero, the fringe peaks of the different wavelengths will fail to overlap

perfectly, and the fringes will blur out, as described in the “spectral bandpass” section

below.

Spectral dispersion can be used with pupil-plane interferometry by adding a prism or grating

just before detection, so that adjacent wavelengths fall on adjacent detector pixels. The

resulting display is called a channel spectrum, because for non-zero path differences the

spectrum will be wavelength-modulated by a sinusoidal intensity pattern (opposite in the

two output beams) with the appearance of channels in an otherwise smooth spectrum. The

depth of modulation at each wavelength gives the visibility directly.
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Figure 3.6: Beam splitter experiment showing a unit-intensity beam incident on a
thin beam splitter, with two mirrors arranged so as to give equal length arms. The
emerging beams are parallel and overlapping. Losses due to absorption or scattering
are indicated.

3.2.3 Beam splitter Phase-Shift

In this section we prove the remarkable fact that the phase difference between reflected and

transmitted beams from a beam splitter is π/2.

Suppose that we have a thin, symmetric beam splitter, such as a thin metal layer suspended

in space or sandwiched between two identical sheets of glass. Suppose that the relative

amplitude of a wavefront reflected from this beam splitter is r with phase shift δr, the

relative amplitude of the transmitted wavefront is t with phase shift δt, and the relative

amplitude absorbed or scattered is a.

Suppose that we set up a lab experiment as shown in Figure 3.6. The incident beam has

amplitude A0 = 1 from one side of the beam splitter, and zero from the other side.

The incident beam is split into a reflected complex amplitude reiδr , a transmitted complex

amplitude teiδt , and an absorbed amplitude a. The corresponding relative intensities are

reflectance R = |r|2, transmittance T = |t|2, and absorptance A = |a|2. Each split beam

is then reflected by a perfectly reflecting mirror and returned to the beam splitter with

identical delay and phase shift on reflection in each arm; these terms will factor out, so we

ignore their effect here to keep the equations uncluttered.
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The returned beams then each split again as before, and are partially absorbed as well.

The emerging amplitudes are then given by

A1 = reiδr teiδt + teiδtreiδr (3.53)

= 2rtei(δr+δt) (3.54)

A2 = reiδrreiδr + teiδtteiδt (3.55)

= r2ei2δr + t2ei2δt (3.56)

The absorbed amplitudes are

A3 = a ; A4 = ra ; A5 = ta. (3.57)

The corresponding intensities of the incident, reflected, and absorbed beams are

I0 = 1 (3.58)

I1 = 4RT (3.59)

I2 = R2 + 2RT cos2(δr − δt) + T 2 (3.60)

= R2 − 2RT + T 2 + 4RT cos2(δr − δt) (3.61)

I3 + I4 + I5 = A + RA + TA (3.62)

Conservation of energy requires that I0 = I1 + I2 + I3 + I4 + I5. Inserting the above values

and simplifying, we find that the phase shifts are required to obey

cos2(δr − δt) = 0 (3.63)

|δr − δt| = π/2 (3.64)

Thus a thin beam splitter will have a π/2 phase shift between the reflected and transmitted

beams, independent of the reflection, transmission, and absorption in the beam splitter. (I

suspect, but have not shown, that this result still applies to finite-thickness non-absorbing

beam splitters, but that the result fails for finite-thickness absorbing asymmetric beam

splitters.)

By substituting δr = δt±π/2 back into the amplitude equations, it is easy to show that the

output beams both have the same phase, +2δt, which is interesting, but has no immediate

application.

By repeating the entire derivation with unequal arm lengths it is also easy to see that the

output beam intensities are complementary, i.e., that the intensities add to a constant

value. This result does have great value, because it means that in a real pupil-plane

interferometer, the sum of the output intensities can be used to normalize unavoidable

intensity fluctuations due to atmospheric or other perturbations. Since these fluctuations

often exceed photon-counting (Poisson) fluctuations on relatively bright stars, the technique

of intensity normalization is a valuable tool for maximizing the observed signal-to-noise

ratio.
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Figure 3.7: (a) A multiplexing scheme for a pupil-plane interferometer showing three
combination baselines 1B0, 2B0, 3B0 for three beams. The input baselines Bij can
be arbitrary, and are independent of the output baselines. (b) A multiplexing scheme
for an image-plane interferometer, showing three combination Doppler-shift velocities
3v, 2v, 0v for three beams. Here too, the input baselines can be arbitrary.

3.2.4 Multiplexing Three or More Apertures

For N apertures or telescopes, there are N(N − 1)/2 baselines among the apertures. The

N beams can be combined in N(N − 1)/2 pairs, with each pair being detected as discussed

above. However the N beams can also be combined all at once on a single detector pixel, if

care is taken to encode each different pair of telescope beams with a different modulation

frequency so that the component pairs can be extracted in post-processing.

There are two advantages to multiplexing. First, in the case where detector noise is greater

than photon shot noise, it is advantageous to put the largest possible signal on the fewest

possible detector elements. Second, in the case where phase-closure measurements are

being made (which requires three or more telescopes), it is advantageous to have all the

beams traversing the same paths as much as possible, to avoid unmeasured path changes

in the optics due to temperature changes, etc., and this leads naturally to having all beams

superposed.

A multiplexing image-plane interferometer can be made by arranging the output beam

separations in a minimum redundancy array, so that the spatial frequencies in the image

plane all have different values. This is illustrated in Figure 3.7(a) where the separations are

B0 and 2B0, so that the squared visibilities at each of the output spatial frequencies are in

the proportions f12 ∼ 1, f23 ∼ 2, and f31 ∼ 3, for example.

The power spectral density of the spatial intensity distribution is defined as

PSD = |FFT (fringe pattern)|2. (3.65)
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A plot of the PSD against spatial frequency will give distinct peaks at each of these frequen-

cies, proportional to the image content at the corresponding external baselines B12, B23,and

B31. Alternatively a two-dimensional ~B0 pattern could be used, and a two-dimensional FFT

extraction performed.

A multiplexing pupil-plane interferometer can be made by arranging the input beam delays

to have different delay-line speeds, so that the Doppler shifts of the combined beams are

each different. Figure 3.7(b) illustrates this with delay line velocities in the ratios v1 ∼ 3,

v2 ∼ 2, v3 ∼ 0, so that the temporal PSD of any of the combined beams will contain distinct

peaks at the output temporal frequencies in the ratios f12 ∼ 1, f23 ∼ 2, and f31 ∼ 3, and

the power in each peak is proportional to the visibility squared.

3.3 Visibility Loss Effects

High-quality measurements require that the observer minimize and calibrate the instru-

mental losses of visibility. Some of these effects can be minimized by proper design of

the interferometer, and some by operation; all effects can be calibrated out of the data,

in principle. A recent examination of instrumental sources of visibility loss for the IOTA

interferometer, including more effects than listed here, is given by Porro et al. (1999).

The Strehl ratio S is defined as the ratio of (a) the measured peak intensity Imeas(max)

of an image formed by a real optical system, including optical aberrations, and frequently

including atmospheric seeing; and (b) the idealized peak intensity Iideal(max) of an image

formed by an ideal optical system, including only the effects of diffraction, and not including

atmospheric seeing. Thus the Strehl ratio for images is

S = Imeas(max)/Iideal(max). (3.66)

The Strehl ratio concept is also applicable to the fringe modulation in an interferogram, for

either spatially or temporally displayed fringes. By analogy we write the Strehl ratio for

fringes as

S = Vmeas(max)/Videal(max). (3.67)

To estimate the combined effect of different sources of visibility, or of Strehl ratio, from

the star and the instrument, the general practice is simply to multiply the various factors

together, because we assume that they are all independent. Although this cannot be strictly

valid, it is a very good approximation for small perturbations.

Atmospheric fluctuations can also cause visibility losses, and these can be more troublesome

than instrumental losses because potentially they are larger in magnitude and variable in

time; these effects are discussed by Quirrenbach in Chapter 5.

The results in this section will be stated without derivation; however, using the principles

outlined above, the derivations could be supplied by the reader.
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3.3.1 Spectral Bandpass

All stellar measurements use a finite range of wavelengths, or bandwidth. Any fringe

packet, whether it is displayed spatially or temporally, will suffer a reduction in modulation

amplitude at the edges of the packet, where the different wavelengths will produce opposing

peaks and valleys. Suppose that the spectral bandpass is rectangular, and has a center and

full-width at half-maximum (FWHM) of (λ,∆λ) wavelengths, or (σ,∆σ) wavenumbers,

where σ = 1/λ and ∆σ = ∆λ/λ2 and where ∆λ/λ = ∆σ/σ.

In this case the visibility decreases with distance from the zero path-difference point ac-

cording to

Vbandpass(∆z) =
sin(π∆z∆σ)

π∆z∆σ
(3.68)

=
sin(π∆z∆λ/λ2)

π∆z∆λ/λ2
. (3.69)

Here the path difference is given by ∆z = zext. − zint. as discussed in the previous section.

The first zero of this function is at ∆z∆σ = 1, from which we find that the number of

fringes Nbandpass between envelope zero-crossings in a finite-bandpass wave packet is

Nbandpass = 2λ/∆λ. (3.70)

In the general case there is a Fourier-transform relation between the bandpass shape and

the fringe packet shape. This is illustrated in Figure 3.8, for the case of a real K-band filter,

which is approximately rectangular. Note the sidelobe ringing, which results from aliased

beating of the various wavelength fringe patterns outside the main lobe.

In Figure 3.8(a) we measure the filter width to be ∆λ ' 0.40 µm, so in the fringe packet

we expect Nbandpass ' 11 fringes, and this is in fact about what we see in corresponding

fringe packet in Figure 3.8(b).

In a pupil-plane interferometer, as the delay line is scanned through the white-light point,

the pattern in Figure 3.8(b) is exactly the observed modulation of intensity vs time. In

the extreme case of no spectral filtering, the wave packet will tend towards a single spike

delta-function. At the other extreme of a very narrow filter, the wave packet will be very

many wavelengths wide.

3.3.2 Wavefront Tilt

If two wavefronts of width D are tilted by an angle α, then the interference pattern will be

smeared and visibility reduced. The one-dimensional visibility factor from this effect is

Vtilt =
sin(πDα/λ)

πDα/λ
(3.71)



3.3. VISIBILITY LOSS EFFECTS 53

Figure 3.8: (a) Measured K filter transmission profile. (b) Calculated wave packet
shape of a pupil-plane interferometer temporal scan through the zero-path-difference
point, with the K filter shown. Note that the wave packet is sine-modulated, not
cosine-modulated, as is appropriate for an ideal beam splitter.)

for a slit or rectangular aperture. The visibility factor from a two-dimensional circular

aperture of diameter D is

Vtilt =
2J1(πDα/λ)

πDα/λ
. (3.72)

If you wish to have Vtilt > 0.90, say, then you need to be sure that the wavefronts combine

at an angle α < 0.3λ/D. For example, in a pupil- or image-plane interferometer, where in

either case a star image will be formed, this amounts to a star-image-overlap criterion of

about 25% of a diffraction-limited spot.

Likewise, a star tracker system, which directly controls wavefront tilt on a continuous basis,

will have to peform at least as well, i.e., to 25% of the telescope’s diffraction limit, to ensure

that the measured visibilities do not fluctuate appreciably. The star-tracker system is thus

a crucial part of an interferometer, and it can be a challenging task to achieve an optimum

design.

3.3.3 Intensity Mismatch

If the relay optics fail to perfectly overlap the beams from each telescope, or if the beam

combiner has unequal reflection and transmission factors, or if the combined beams come

from different diameter telescopes and therefore have different intensities in the overlap

region, then we will have a reduction in visibility from any of these factors. Let the intensity

ratio between one beam and another be written as I1/I2 = ρ. The visibility factor from

this effect is

Vmismatch =
2

ρ+1/2 + ρ−1/2
. (3.73)

This is a relatively tolerant effect. The reason is that amplitudes vary as the square root
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of intensity, so two amplitudes will always be relatively closer in numerical value than the

corresponding two intensities.

For example, if the beam combiner has an intensity reflection R = 60% and a transmission

T = 40%, then ρ = 1.5, so Vmismatch ' 0.98, and there is very little loss of visibility.

3.3.4 Optical Surface Figure Errors

If the combining wavefronts each have a root-mean-square (rms) perturbation of δ with

respect to a perfect wavefront, and if the perturbations are randomly distributed across

the wavefront, and uncorrelated between the two wavefronts, then the Strehl ratio and the

fringe visibility will be degraded (Born and Wolf, 1999) according to

Vsurfaces ' e−(2πδ/λ)2 . (3.74)

If there are N surfaces with rms of δ0 each, then

δ ' N1/2δ0. (3.75)

For example, if we use a common optical polishing criterion which balances quality and

cost, each flat mirror will have a peak-to-valley (pv) surface flatness of λ0/20, where λ0 =

0.632 µm is the laser measurement wavelength in the optical shop. Experience with several

measured mirrors suggests that pv and rms are related by a factor pv/rms ' 5.5. Suppose

these mirrors are used at an average angle of incidence of 45o. The reflected wavefront will

be two times worse than the mirror itself. Combining these factors, we get the wavefront

rms at 45o incidence from a single λ0/20 pv mirror as

δ0 =
2(λ0/20)

5.5 cos(45o)
(3.76)

= λ0/39 (3.77)

for each reflection. Suppose that there are N = 14 mirrors in a typical ground-based

interferometer. The net wavefront rms after N reflections will then be δ ' λ0/10, and

the visibility from this alone will be Vsurfaces ' e−(π/5)2(λ0/λ)2 . If the test and operating

wavelengths are the same, then we find Vsurfaces ' 0.67. This is a significant loss, and it

shows that the cumulative effect of even rather good optical surfaces can strongly affect an

interferometer. If the operating wavelength is longer, then the visibility is improved. See,

e.g., Porro et al. (1999) for a complete discussion.

3.3.5 Polarization Effects

We tend to ignore polarization, perhaps because our eyes are not sensitive to it, but anyone

with the type of polarized sunglasses that you could buy at one time will tell you that

reflected light, from the sky or pavement or automobile hood, can be highly polarized. It

should be no surprise then that polarization can reduce fringe visibility, as we now show.
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Suppose we consider a typical flat mirror which reflects light incident at 45o from the

normal. The electric vector components which are perpendicular and parallel to the plane

of incidence are called the s and p components respectively. A typical overcoated silver

mirror will cause the difference between the s and p phases to change by about 30o in

the visible, with the change at other wavelengths varying roughly as λ−1, i.e., less in the

infrared.

If an interferometer can be built so that the reflections in each arm follow the same sequence

of changes of direction, and if the corresponding mirrors at each reflection are of the same

type, then both beams will experience the same phase shifts, and the respective s and

p components will combine independently in the focal plane and produce identical fringe

packets. This is the principle behind the layout of the IOTA interferometer (Traub, 1988),

for example.

However if the sequence of reflections is different, or the mirrors are not the same, then

s − p differences can occur. Suppose that the s − p shift between the two beams is φsp.

Then the interferogram will have a visibility term Vpol, where

Vpol = | cos(φsp/2)|. (3.78)

Note that if φsp = π, then the interferograms from each polarization will be modulated

such that the peaks of one occur in the valleys of the other, and the net modulation will

be zero. Thus it is possible to make the net interference effect disappear completely! See

Traub (1988) for more details.

3.4 Visibility Enhancement Methods

Among the many fascinating methods that have been invented to enhance the instrumental

visibility, we briefly discuss four which are of particular interest for current ground- and

space-based interferometers: adaptive optics, single-mode fiber optics, single-mode inte-

grated optics, and nulling.

3.4.1 Adaptive Optics

If an adaptive optics (AO) system is used at a telescope the distortion of an input wave-

front can be measured and corrected in real time. A compensating distortion is applied to

a mirror, so that the resulting wavefront is (in principle) perfectly flat. The measurement

is done using either a natural guide star (NGS) or laser guide star (LGS) as a wavefront

reference. The technology has been dramatically demonstrated at large ground-based tele-

scopes, where a typical image-width reduction of roughly a factor of 10, and a central

intensity increase of a factor of 101.5 can be achieved. To date, the technique has not

yet been applied to an interferometer, but it will be required when interferometer mirror

diameters much exceeding 1 m are used.
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The advantage of AO is that large telescope diameters can be used, independent of the

atmospheric coherence length. Two references are Roddier (1999) and Hardy (1998).

3.4.2 Fiber Optics

Single-mode fiber optics may be used within an interferometer (a) to select essentially

the plane-wave part of a wavefront, (b) to split a guided wave into any desired intensity

ratio, and (c) to interferometrically combine two guided waves. Wavelengths longer than

the cutoff wavelength will excite a single electromagnetic mode of a fiber waveguide; the

cutoff wavelength is a simple function of core radius, core index, and cladding index. Fiber

couplings are formed by arranging the cores of two fibers to run parallel to each other

with roughly one core diameter thickness of cladding material between the cores. Under

these conditions the core excitation hops periodically between one core and the other. By

adjusting the interaction length one can achieve any desired degree of transfer, including

roughly 50:50, at a particular wavelength.

The advantage of single-mode fibers is that when only the plane-wave part of the wavefront

is used, the fluctuations in visibility due to random atmospheric warping of the wavefront

are dramatically reduced. Typical visibility uncertainties go from 5% with a classical beam

combiner to 0.5% with a fiber-optic combiner. Atmospheric effects blur the image and

therefore reduce the intensity coupled into each fiber at any given instant. Thus the flux in

each fiber must be monitored. This can be easily done by tapping off a portion of the flux

with a coupler. Two references are Coudé du Foresto et al. (1997) and Delage and Reynaud

(2000).

3.4.3 Integrated Optics

The methods of integrated optics (IO) allow single-mode waveguides to be manufactured

in-situ on the surface of a plane glass substrate, using integrated-circuit techniques, with

all of the advantages of fiber optics, plus the advantage of small size and reduced cost of

production. IO will be tested at ground-based interferometers in the near future. Recent

progress in this field is described by Malbet et al. (1999) and Haguenauer et al. (2000).

3.4.4 Nulling

Nulling interferometry is a technique in which a phase shift of π is added to one wavefront

segment, so that when it interferes with another segment of the same wavefront, perfect

cancellation is achieved on-axis. Thus a bright central star can be dimmed by many orders

of magnitude relative to the surrounding off-axis material, such as a planetary system.

There are several techniques which can be used to create the π phase shift. Note that this is

not the same as moving a mirror 1/4 wavelength, because for other wavelengths the phase
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shift is different. One technique is to use roof reflectors (pairs of mirrors at 90o) to achieve a

reversal of sign of the electric vector. Another technique is to introduce a precise thickness

of glass whose index will act to retard all wavelengths by very nearly one-half wavelength.

Mirror and lens combinations can also be used. To date broad-band nulling of 1 part in

104 in the visible has been achieved, using pairs of roof reflectors. Nulling interferometry

is discussed in Serabyn in Chapter 16. Four further references are Bracewell and MacPhie

(1979), Hinz et al. (1998), and Serabyn et al. (1999).
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